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1. Epigenetics: General Concepts

Epigenetics is specifically concerned with reversible 
changes in gene expression or silencing that do not involve 
changes in DNA base sequences and that furnish a cell 
memory that goes beyond the potential of the DNA genetic 
code and that can be heritable through mitosis or meiosis, 
passing to the next generation (Wu and Morris, 2001). 
Gene expression can thus be altered without modification 
of the genetic code.

The mechanisms of epigenetic changes include 1) DNA 
methylation, which results from the incorporation of a 
methyl group to the cytosine carbon 5, mostly in cytosine 
followed by guanine (CpG) and leading to the formation 
of 5-methylcytosine (5mC), 2) histone post-translational 
modifications, including acetylation and methylation, 
and histone variants, and 3) mechanisms mediated by 
non-coding RNAs. All these epigenetic mechanisms with 
respective effects on cells and organisms have been 
widely described and the subject of several reviews, with 
predominant application to vertebrate models. In insects, 

epigenetic studies have been restricted to a few model 
groups and species and even in these cases, a few reports 
have been addressed to disease vectors (Sharakhov 
and Sharakhova, 2015), possibly because non-efficient 
functional validation tools are sufficiently available for 
these non-model organisms (Richard et al., 2021). It is 
always worth mentioning that the pioneering studies and 
concepts of Waddington, who coined the term Epigenetics 
in 1942 (Waddington, 2012), refer to the environmental 
influences on the development of phenotype in Drosophila 
melanogaster (Tronick and Hunter, 2016).

Epigenetic mechanisms regulate the development 
of extreme phenotypic divergences and environmental 
adaptations, permitting dynamic changes of insect 
phenotype, conservation of insect forms and functions, 
and interconnections with other forms of biological 
regulation (Villagra and Frías-Lasserre, 2020). Regarding 
social insects, including ants, bees, wasps, and termites, 
epigenetics has revealed an important role in eusocial 
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Planococcus citri, a citrus mealybug that exhibits a sex-
specific genomic imprinting with the elimination of the 
entire paternal genome during spermatogenesis, has been 
analyzed with reference to its DNA methylation profile 
(Bain et al., 2021). Genome-wide-analysis of sex-specific 
gene expression and DNA methylome performed in adult 
specimens revealed that while males exhibit overall higher 
levels of DNA methylation manifested at more uniform low 
sites across the genome, females display more targeted 
higher levels of DNA methylation (Bain et al., 2021). These 
findings were suggested to be associated with chromosomal 
differences caused by the paternal genome elimination 
and possibly related to ploidy compensation.

In contrast to vertebrates in which most DNA 
methylation occurs in both intragenic and intergenic 
regions, in insects DNA methylation occurs within gene 
bodies affecting exon sequences in holometabolous species, 
or occurs largely in the genome in hemimetabolous species 
(Glastad et al., 2019). The functional significance of this 
event is yet not clear, especially considering that the DNA 
methylation events have a general effect on transcription 
factor binding and recruitment which in turn requires 
patterns of transcript splicing (Glastad et al., 2019).

2.2. Histone modifications

Histones are basic proteins that make complexes with 
the DNA forming chromatin in eukaryotes; they not only 
play a structural role by packaging the DNA but also 
represent regulators of the DNA function. Post-translational 
modifications of histones, which include acetylation, 
methylation, phosphorylation, and ubiquitination, among 
others, of several of their different amino acid residues, 
and that are mainly focused on histones H3 and H4, are 
involved in the regulation of cell differentiation and disease 
(Lennartsson and Ekwall, 2009). Histone acetyltransferases 
(HATs) and histone deacetylases (HDACs) are the enzymes 
responsible for inserting and removing the acetyl groups, 
in and from, respectively, the amino acids of histones. 
Histone acetylation mostly affecting lysine (K) residues 
reduces the electrostatic binding of histones to DNA, 
facilitating the accessibility of binding factors to DNA and 
permitting its transcription. Histone methylation, on the 
other hand, may be associated with actively expressed or 
repressed genes depending on the metabolized residues, 
the number of inserted -CH3 groups to these residues, and 
wherein the genome such inserted groups are associated. 
For example, H3K27me is correlated with active genes 
whereas H3K27me3 is associated with silent genes; 
H3K9me3 correlates with repressed genes when present 
at the gene promoter but correlates with gene expression 
when enriched within the body of a gene (Black and 
Whetstine, 2011). Non-histone proteins, for instance, the 
heterochromatin protein HP1, may associate with histone 
modifications, participating in chromatin structure and 
remodeling (Felisbino et al., 2014).

It appears that histone modifications or an alternative 
sequence variant of a histone may be more involved in the 
mediation of phenotypic plasticity in insects than DNA 
methylation (Glastad  et  al., 2019). However, except for 
flies of the genera Drosophila and Anopheles, a few studies 

societies, participating in caste determination and 
phenotypic plasticity, and leading to the evolutionary 
success of these groups (Bonasio, 2014; Yan et al., 2015; 
Sieber et al., 2021).

In this brief review, we summarize some relevant aspects 
of the epigenetic mechanisms reported for insects and 
the emerging role of drugs like valproic acid, that while 
perturbing the epigenome in human and animal cells, may 
contribute to a better understanding of the diversity of the 
epigenetic metabolic pathways followed by these drugs 
when using insects as complimentary research models.

2. Epigenetic Markers in Insects

2.1. DNA methylation

DNA methylation is generally associated with the 
repression of gene activity and depends on the action 
of enzymes of the DNA methyltransferase (DNMT) 
family. Although it does not cause changes in the DNA 
sequence, it significantly affects the interaction of DNA 
with proteins (Kozeretska et al., 2017). The analysis of the 
DNA methylation and demethylation processes in insects 
indicates that these epigenetic events not only allow them 
to control and tolerate stress insults but also furnish the 
ability to change their structures and behavior, and affecting 
their offspring (Villagra and Frias-Lasserre, 2020).

Even though DNA methylation is a widely heritable 
form of epigenetic information especially residing in the 
CpG context in several organisms, it is absent or reduced 
from the genomes of many insect species (Suzuki and 
Bird, 2008; Bewick  et  al., 2017; Provataris  et  al., 2018; 
Glastad  et  al., 2019). In dipterans, including Drosophila 
melanogaster, there is little presence of DNA methylation 
(Lyko et al., 2000; Provataris et al., 2018). In the beetle 
Tribolium castaneum, the levels of DNA methylation are 
also close to zero (Schulz et al., 2018). In the hemipteran 
species Aphis nerii and Triatoma infestans, although 
cytosine methylation is revealed in euchromatin, it is 
not identified in heterochromatin (Alvarenga et al., 2011; 
Mandrioli et al., 2011).

In highly eusocial bees, the bumblebee Bombus terrestris, 
ants, and non-social wasps, where DNA methylation was 
confirmed, shared methylation sites associated with key 
biological processes (development, caste differentiation, 
lifespan, sex determination, cognition and memory, among 
others) have been suggested by several authors (Villagra 
and Frias-Lasserre, 2020 – review, Araujo and Arias, 
2021), although DNA methylation as a causal role in the 
divergent development of queen and worker castes has been 
questioned for honeybees (Oldroyd and Yagound, 2021). 
In the larval genome of Apis mellifera around 49 million 
cytosines are present, of which only 90,000 cytosines are 
methylated; genomic analysis showed 38 differentially 
methylated genes between queen larvae and worker 
larvae associated with differentiation of specific organs, 
including those involved in reproduction, morphology, 
and vision differentiation (Wang et al., 2020). In addition, 
involvement of non-CG methylation in bee eusociality has 
recently been proposed (Araujo and Arias, 2021).



Brazilian Journal of Biology, 2024, vol. 84, e256045 3/9

Insect epigenetics and the valproic acid perspective

are still devoted to exploring post-translational histone 
modifications in association with transcription control 
and the regulation of chromatin structure and function 
(Swaminathan et al., 2012; Neafsey et al., 2015; Sharakhov 
and Sharakhova, 2015). In Drosophila, different members 
of HDACs are related to specific functions and processes 
such as aging, segmentation, suppression of apoptosis, 
and circadian rhythms, and the histone demethylase 
KDM5 is responsible for regulating social behavior 
through immunological maintenance of the intestinal 
microbiota, and development control (Chen et al., 2019; 
Drelon et al., 2019).

Epigenetic research to evaluate interferences of 
pathogenic bacteria on the regulation of HDACs and 
HATs in insects demonstrated that histone acetylation/
deacetylation intervenes in transcriptional reprogramming 
during metamorphosis and in response to injuries and 
infections, which can modulate directly responses on 
immunity and development (Mukherjee et al., 2015, 2017). 
Histone acetylation can also play an important role in 
chromosomal imprinting in the germline of sciarid flies; 
in male meiosis, the maternal chromosomes are highly 
acetylated for histones H3 and H4, whereas the entire set 
of the paternal chromosomes that will undergo elimination 
appears under-acetylated (Goday and Ruiz, 2002; Matsuura, 
2020). Locusta migratoria represents one of the richest 
species in histone-modifying enzymes, that are highly 
expressed in male eggs and testes, and that can play 
important roles in embryogenesis and spermatogenesis 
(Guo et al., 2016; Lo et al., 2018).

Twelve HDACs have been identified in the coleopteran 
Tribolium castaneum. HDAC1, particularly, plays a role 
in the regulation of cellular processes necessary for the 
postembryonic development of this insect, affecting 
the acetylation status of histones and suppressing the 
expression of genes involved in the action of the juvenile 
hormone (George et al., 2019). In the absence of juvenile 
hormone, multiprotein complexes suppress the expression 
of juvenile hormone response genes. On the other hand, 
suppression of the expression of the HDAC1 gene by juvenile 
hormone induces increase in the acetylation levels of core 
histones regulating the expression of juvenile hormone 
response genes such as Kr-h1 (George et al., 2019). These 
findings demonstrate that the juvenile hormone action is 
affected by epigenetic modifications (George et al., 2019).

Differential identification of acetylated H3K9, H4K8 and 
H4K16 and mono-, di-and trimethylated H3K9 (H3K9me/
me2/me3) between euchromatin and heterochromatin 
has been reported in the hemipteran species Triatoma 
infestans and Panstrongylus megistus, vectors of Chagas 
disease, and are consistent with the transcriptionally 
active and relatively inert status, respectively, of these 
chromatin compartments (Alvarenga et al., 2016, 2018). 
More details on histone acetylation, histone methylation, 
and histone phosphorylation in insects have been recently 
revised by Villagra and Frías-Lasserre (2020).

Histone variants also alter gene expression. Variants 
of the canonic histone H2A, for instance, affect the 
chromatin repeating elements, the nucleosomes, resulting 
in increased accessibility of the DNA. Histone variants 
have been detected in Drosophila and are considered 

promising candidates for investigation in other insect 
species (Glastad et al., 2019).

2.3. Non-coding RNAs

Regarding the epigenetic effects carried out by non-
coding RNAs, small RNAs like microRNAs (miRNAs) and 
Piwi-interacting RNAs (piRNAs), with 20-40 nucleotides, 
and long non-coding RNAs (lncRNAs), with more than 
200 nucleotides, have particularly been identified in 
the regulation of gene expression of insects, especially 
in Drosophila (Chambeyron and Seitz, 2014; Kelleher, 
2016; Glastad  et  al., 2019; Villagra and Frías-Lasserre, 
2020). miRNAs are post-transcriptional regulators of gene 
expression by interacting with mRNAs and affecting protein 
levels (Bartel, 2009; Asgari, 2018; Richard et al., 2021). 
A review by Asgari (2018) has emphasized that although 
studies of insect miRNAs are recent, they are already 
revealing involvement of these molecules in development, 
reproduction, caste determination, lifespan, insecticide 
resistance and immune responses to infection, among other 
physiological events. Caste-specific expression of miRNAs 
has been reported in ants, honeybees, and bumblebees 
(Guo  et  al., 2013), ranging from 257 in the silkworm 
Bombyx mori, to 883 in Locusta migratoria (Wang et al., 
2015; Wang et al., 2019).

Recent studies have shown the use of an artificial miRNA 
(amiRNA) approach for gene silencing to generate insect 
pest-resistant tomato plants. Plant amiRNAs are produced 
by expression of a miRNA gene genetically modified to 
silence a desired target gene. amiRNAs manipulate gene 
functions because of their efficiency and specificity to 
decrease target gene expression. Plant amiRNAs are thus 
a potential strategy for engineering plant resistance to 
virus and insects (Agrawal  et  al., 2015; Yogindran and 
Rajam, 2021). Helicoverpa armigera specimens that were 
continuously fed with tomato leaves expressing amiRNA-
319a-HaEcR, showed a reduction in the target gene 
(ecdysone receptor EcR) transcripts, affecting the general 
growth and survival of this lepidopteran pest. Furthermore, 
the expression of downstream genes involved in the 
ecdysone signaling pathway (E74A, Et4B, BR-C7 and HR3) 
was affected. Interference in the ecdysone signaling results 
in impaired embryogenesis and disrupted metamorphosis. 
These results helped to understand the role played by 
ecdysone receptors as well as the effectiveness of amiRNA 
technology in the control of H. armigera (Agrawal et al., 
2015; Yogindran and Rajam, 2021).

Following the same line of reasoning on pest control, a 
methodology based on pre-microRNA proved to be efficient 
in controlling herbivorous insect pests. The study was 
conducted with insect pre-microRNA (pre-miR) transcripts 
that were modified to contain microRNAs targeted to insect 
genes and expressed in transgenic Nicotiana benthamiana 
plants. These modified pre-miRs remained largely 
unprocessed in plants. Thus, the insect pest H. armigera, 
when fed on the leaves of these plants, had a significant 
increase in mortality, developmental abnormalities, and 
delays in growth rates (Bally et al., 2020).

piRNAs that were identified for the first time in D. 
melanogaster, are single-stranded noncoding RNAs that 
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can initiate epigenetic events within insect genomes 
(Glastad et al., 2019). They interact with transcribed genes 
inducing co-transcriptional silencing and generating 
heterochromatic marks where transposable elements are 
present, thus protecting the genome from damages the 
transposable elements could bring (Glastad et al., 2019).

lncRNAs are particularly suggested to be involved 
in caste development in Hymenoptera. In this insect 
group, lncRNA regulates the size of the worker ovaries 
in honeybees (Humann et al., 2013; Richard et al., 2021), 
binds to specific targets, and recruits chromatin-modifying 
enzymes, initiating the formation of a silent or an active 
chromatin site (Glastad et al., 2019).

3. Valproic Acid Effects on Epigenetic Markers

Some drugs may affect the epigenetic information 
by acting on the deposition or removal of epigenetic 
markers. One of these drugs is valproic acid which may 
work through different metabolic pathways, affecting 
several types of epigenetic markers and behaving as an 
epigenetic modulator.

Valproic acid is a short-chain fatty acid that in 
association with its sodium salt (VPA) has been widely 
prescribed as an anticonvulsive drug. The effects of 
VPA involved with the treatment of seizure disorders 
revealed activities as inhibition of transamination of the 
neurotransmitter gamma-aminobutyric acid (GABA) and 
blockage of the voltage-gated sodium and T-type calcium 
channels (Chateauvieux et al., 2010). VPA has also been 
demonstrated to have a binding affinity for chromatin 
components by acting directly on histones and DNA 
(Sargolzaei et al., 2017; Vidal and Mello, 2020, 2022) and 
altering histone H1/nucleosome ratios (Baumann et al., 
2021).

In addition to these pharmacological effects, VPA has 
been found to inhibit cell proliferation, affecting mitotic 
indices and eliciting cell death pathways, especially in 
tumor cells. These findings allowed it to be proposed 
alone or synergistically combined with other drugs as 
a promising antitumor agent that has been evaluated 
under phase I and II clinical trials (Duenas-Gonzalez et al., 
2008; Mohammed et al., 2011; Goyal and Rodriguez, 2013; 
Heers  et  al., 2018; Zhang  et  al., 2019). Although many 
advantageous effects have been demonstrated for the 
use of VPA, it is not to be neglected that some adverse 
effects like hepatotoxicity, teratogenesis, and expansion 
of leukemic stem cell population are risks that limit its 
use in humans (Bug et al., 2007; Lennartsson and Ekwall, 
2009; Chateauvieux et al., 2010).

VPA was also demonstrated as a potent drug that affects 
epigenetic markers in a vast number of human and animal 
cells, changing gene expression and chromatin interaction 
with regulatory factors. Among these effects, inhibition of 
class I HDAC, with the activation of diverse gene promoters, 
and promoting chromatin remodeling was soon revealed 
(Göttlicher et al., 2001; Phiel et al., 2001; Eyal et al., 2004; 
Felisbino et al., 2011; Mello, 2021). In rats, many genes 
involved in epileptogenesis were demonstrated to become 
upregulated when hyperacetylation of histones on their 

promoters was induced by VPA (Fukuchi  et  al., 2009). 
A higher number of differentially expressed genes can result 
from the VPA action, as demonstrated, for instance, in HeLa 
cells (Dejligbjerg et al., 2008) and, under a hyperglycemic 
microenvironment, in HepG2 cells (Felisbino et al., 2021).

The methylation status of histones and DNA is also 
affected by the VPA action in many cell types. Methylation 
and demethylation of histones especially affecting lysine 
residues are events modulated by the VPA action that may 
occur simultaneously with HDAC inhibition (Ganai et al., 
2015), affecting the intensification of global gene 
expression and depending on the metabolized residues 
(Lanouette et al., 2014; Mello, 2021). DNA demethylation 
promoted by VPA is a complex process that generally 
stands longer than histone acetylation (Detich et al., 2003; 
Lee et al., 2010; Perisic et al., 2010). It flows through a 
passive or an active pathway, depending on the cell type, 
and is especially verified to affect tumor suppressor genes 
(Milutinovic et al., 2007; Gu et al., 2012; Veronezi et al., 
2017). The passive pathway presumes suppression of the 
activity of enzymes of the DNMT family that are responsible 
for the maintenance of the methylation status in cytosines. 
The active pathway of DNA demethylation involves the 
action of enzymes of the ten-eleven-translocation (TET) 
family that converts 5mC into C derivatives (Guo et al., 
2011; Wu and Zhang, 2014; Rocha et al., 2019). There are 
cells in which, although acting predominantly within an 
active pathway, the DNA demethylation phenomenon 
induced by VPA may also occur within a passive pathway 
(Rocha et al., 2019).

4. VPA Effects in Insects

The use of mammals in scientific activities has provoked 
considerable discussions over the years regarding the 
ethical character, mainly due to the use of a high number 
of animals and the suffering caused in various scientific 
procedures (Liguori et al., 2017; Santos, 2019). Insects have 
been proposed as an alternative for analysis of potential 
epigenetic side effects, including those transferable to 
offspring, on account of their shorter generation intervals, 
high fecundity, facilities for using larger samples, and 
resistance to pathogens, parasites, and environmental 
stress, thus diminishing ethical concerns (Mukherjee et al., 
2015; Bingsohn et al., 2016). Furthermore, insects present 
themselves as remarkable and important models for the 
research of epigenetic inheritance, since many insect 
species show high phenotypic plasticity, that is, the ability 
of an individual organism to respond to the environment 
by producing alternative phenotypes based on the same 
genotype (Manfredini et al., 2019). Epigenetic research 
on insects is an important tool for studying biodiversity, 
as environmental stimuli result in heritable phenotypic 
changes with biological variation without mutations 
and independent alterations in the DNA sequence to the 
detriment of variation in gene expression levels (Amiri, 
2019).

A few experimental studies using VPA have been 
undertaken in insects. Among these, some are proposed 
as alternative models for epigenetic researches while 
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others are devoted to search for effects on precise 
epigenetic markers and action mechanisms or involve 
the determination of toxicity induction.

MJDtr-Q78 transgenic Drosophila specimens have been 
revealed as a strategic model for studies addressed to a 
VPA treatment of a human disorder known as Machado-
Joseph Disease (MJD), which is a polyglutamine (polyQ) 
neurodegenerative disorder and that involves an imbalance 
in histone acetylation (Yi et al., 2013). This transgenic model 
exhibits neurodegenerative phenotypes that could be 
considered similar to characteristics of the human disease. 
Using this model, VPA treatment was found to alleviate 
neurodegeneration, suppressing apoptosis and restoring 
the imbalance in the acetylation levels of histones H3 and 
H4 (Yi et al., 2013). At a dose of 2.5 mM for 15 days VPA 
prevented eye depigmentation while a dose-dependent 
increase in climbing activity was verified for flies under 
gentler VPA doses (< 1.5 mM for 5 days). Life span was 
mildly prolonged under a 0.5 mM VPA treatment. Based 
on these data, VPA was suggested as a possible therapeutic 
drug in the MJD disease, suppressing retinal cell death via 
an anti-apoptosis pathway (Yi et al., 2013).

Drosophila has also been considered an attractive system 
to unravel potential pathway mechanisms of anti-epilepsy 
drugs, including VPA, in the treatment of several other 
neurological disorders, revealing differential expression 
of only a small number of genes (Singh  et  al., 2011). 
As concerned with the modulation of bipolar disorder 
using the Drosophila model, VPA has been found to induce 
transcriptional responses at gene ontology and pathway 
level with similar ontology as lithium (Herteleer et al., 
2016). Using Drosophila culture cells and adult flies, it was 
demonstrated that VPA and lithium affect significantly 
overlapping genes similar to the effects described for 
mammals, showing that these drugs act on evolutionarily 
conserved pathways (Herteleer et al., 2016).

When screened for the VPA action, the beetle T. 
castaneum has been revealed to experience a longer-
lasting effect than vertebrates. In this model, VPA induces 
delayed development, reduced longevity, declined 
fertility, and fecundity and revealed a warning system for 
transgenerational epigenetic side effects (Bingsohn et al., 
2016).

A positive longevity effect was reported for A. mellifera 
under treatment with VPA (Rasmussen  et  al., 2021). 
Because this insect is reported to contain a functional DNA 
methylation system similar to humans, Rasmussen et al. 
(2021) investigated whether DNA global methylation 
changes induced by VPA occurred along with the insect 
lifespan. The fact that they did not detect significant effects 
on this level may have been due to the use of ELISA assay 
for such investigation, which was not effective enough to 
detect response changes at specific genome sites.

In Malpighian tubules of T. infestans injected with 
0.5 mM VPA or cultivated in vitro in presence of 0.05 mM 
VPA for 4 h, a few cells showed decondensation of the 
heterochromatin bodies that constitute chromocenters 
(Alvarenga et al., 2016; Bassani et al., 2021). It is interesting 
that although this VPA-induced heterochromatin imaging 
change affected only a few cells, this event could not be 
associated with induction of H3K9 acetylation or DNA 

demethylation (Alvarenga et al., 2016; Bassani et al., 2021). 
Other epigenetic markers are thus possibly involved with 
this response, including non-histone proteins that may 
associate with histone demethylation, which certainly 
requires further studies (Bassani et al., 2021). Much longer 
exposition to VPA or the use of more concentrated doses 
of VPA leads Malpighian tubule cells to apoptosis and 
necrosis (Bassani et al., 2021). Regarding the response of 
the euchromatin of these cells to VPA treatment as assessed 
by H3K9ac immunofluorescence signals, it was slightly 
intensified under cultivation of the Malpighian tubules in 
the presence of 0.5 or 1.0 mM VPA for 4 h especially around 
the chromocenters, a nuclear area previously demonstrated 
to contain 18S rDNA (Imperador et al., 2020).

In terms of methodological approaches for studies 
on the VPA action in insects, injection rather than drug-
feeding methods has been preferred to ameliorate seizure-
sensitive phenotypes in several mutant genotypes of 
Drosophila (Howlett and Tanouye, 2013). In T. castaneum 
and A. mellifera, VPA has been furnished as a supplement 
on diet (Bingsohn et al., 2016; Rasmussen et al., 2021). 
In T. infestans, both injection and tissue culture revealed 
efficient to search for epigenetic changes following VPA 
treatment (Alvarenga et al., 2016; Bassani et al., 2021).

5. Conclusion

Epigenetics has gained significant attention from the 
scientific audience as it explains changes in gene expression 
without the modification in the genetic code of animal and 
plant species. Progress in this matter has been benefited 
from the use of drugs that act as epigenetic modulators. 
However, although Waddington’s pioneering epigenetic 
studies initially referred to an insect (D. melanogaster) 
(Waddington, 2012), the investigation of epigenetic 
markers, interpretation of epigenetic mechanisms and 
use as alternative models for revealing responses to 
epigenetic modulators in another insect species is relatively 
recent. VPA, a drug widely prescribed for the treatment of 
neurological disorders as well as a promising antitumor 
agent and a potent epigenetic modulator may reveal as an 
interesting candidate for unravel new pathway mechanisms 
of drug effects, including those of pharmacological interest, 
when administered to insects. Using insects to evaluate 
VPA actions may allow tracking effects on complex fitness 
parameters and the expression of epigenetic regulatory 
genes, being a valuable early warning system for epigenetic 
risk factors that otherwise would be difficult to detect in 
mammals (Bingsohn et al., 2016). Many investigations that 
will bring new knowledge and possibly unexpected new 
information would certainly be developed and reported 
in forthcoming years.
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