Article

Capacitive Tuning of High Selective T-Shaped Band-Stop Filter: Theory and Experiment

Amit K. Sahu¹, Dhruba C. Panda², Rajeev K. Parida²

¹NMREC Autonomous Institute, Hyderabad, Telengana, 500088, amitsku@gmail.com, ²Berhampur University, Berhampur, Odisha 760007, dcpanda@gmail.com

Abstract— This paper develops an easy design analysis for a simple high selective T-shaped band-stop filter (BSF) loaded with a capacitance. It applies the developed design theory to obtain an appropriate capacitance value for tuning the cut-off frequency. This paper clearly explains the design mechanism for such a simple tunable BSF using ABCD matrices. Simulated filters loaded with capacitances (up to 1.1 pF) show a change in rejection frequencies from 2 GHz (un-tuned) down to 1.047 GHz with 50dB rejection and around 36% -3dB fractional bandwidth. It also shows the effect on pass frequencies which change from 1 GHz down to 111 MHz, while the separation between pass and stop frequency remains around 1 GHz. Measurements on fabricated prototypes match the simulation and theory for tunable frequencies closely. It also compares the performance of the filter with previously reported similar structures.

Index Terms— Band-stop filter, capacitive loading, T-shaped transmission line, tunable.

I. INTRODUCTION

Band-stop filter (BSF) is an essential wireless component in both military and civilian applications. So, it continues to be an area of research interest within the realm of Radio Frequency (RF) and Microwave Technology. It is known that an appropriately designed T-shaped transmission line (TL) can act as a simple BSF. Its operating principle lies in the fact that, with an appropriate choice of length, the open-ended stub acts as a short at the cut-off frequency [1]. A tunable BSF provides many advantages like tunability, compactness, selectivity, cost-effectiveness, and spectrum management in RF and microwave circuits [2], [3]. Stop-band tunability over small ranges includes varactor [4], substrate integrated waveguide (SIW) resonator coupled microstrip line [5], and half mode SIW for flexibly controlled cut-off [6], [7]. A T-shaped TL BSF design makes frequency adjustment possible by inserting an inductive diaphragm at the stub attachment point [8]. Integrating graphene oxide with T-shaped TL BSF results in switching between two frequencies, corresponding to the high and low states of the graphene oxide memristor [9]. Monolithic microwave integrated circuit (MMIC)-based quasi-absorptive bandstop filters (ABSFs) provide high rejection tunable BSF with low tuning range [10], but the structures are complex. However, for frequency tuning, a varactor is common [2], [10]-

[14] in planar circuits.

Open literature lack the theory of how the capacitor affects frequency tuning, although the principle is available. There are no general design equations for tunable T-shaped TL BSF. When there any design equation exists, it is only for special cases. So, the design is mostly dependent on electromagnetic (EM) simulation. As the simulation requires many cycles of iterations, it is computation-intensive and time-consuming. Thus, it is important to focus on developing a design theory that shall require fewer EM simulation cycles and hence consume less computational time.

As discussed, existing works do not report any analytical method for designing tunable T-shaped TL BSF. The novelty of this paper lies in developing simple general design equations for generating the parameters of the capacitively-loaded T-shaped TL BSF using transmission-line model calculations based on ABCD matrices. Finally, EM simulations using Ansys HFSS and measurements on prototype models verify the theory.

II. CAPACITIVELY LOADED BSF DESIGN

The ABCD matrix of a T-shaped planar TL (Fig. 1(A)) is $M_T = M_1 M_2 M_1$. M_1 and M_2 are the ABCD matrices of arm#1 of length l_1 (and arm#2 of length l_1), and the loaded stub of length l_2 , respectively.

Fig. 1. T-shaped open stub filter and its equivalent microstrip TL.

Brazilian Microwave and Optoelectronics Society-SBMOreceived 07 Jul 2023; for review 17 Aug 2023; accepted 16 Feb 2024Brazilian Society of Electromagnetism-SBMag© 2024 SBMO/SBMagISSN 2179-1074

$$M_{1} = \begin{bmatrix} \cos\beta l_{1} & jZ_{1}\sin\beta l_{1} \\ jY_{1}\sin\beta l_{1} & \cos\beta l_{1} \end{bmatrix}$$
(1)

$$M_2 = \begin{bmatrix} 0 & 1 \\ Y_{in} & 0 \end{bmatrix}$$
(2)

 Y_{in} is the input admittance, looking into the capacitively-loaded stub, with loading capacitance *C*, from the main signal line, expressed as:

$$Y_{in} = Y_2 (j\omega C + jY_2 \tan\beta l_2) / (Y_2 - \omega C \tan\beta l_2)$$
(3)

Thus,

$$M_{T} = \begin{bmatrix} M_{T(1,1)} & M_{T(1,2)} \\ M_{T(2,1)} & M_{T(2,2)} \end{bmatrix}$$

with

$$M_{T(l,1)} = \cos 2\beta l_1 + jY_{in}Z_1 \sin \beta l_1 \cos \beta l_1$$
(4a)

$$M_{T(1,2)} = 2 j Z_1 \sin \beta l_1 \cos \beta l_1 - Y_{in} Z_1^2 \sin^2 \beta l_1$$
(4b)

$$M_{T(2,1)} = 2Y_1 \sin \beta l_1 \cos \beta l_1 + Y_{in} \cos^2 \beta l_1$$
(4c)

$$M_{T(2,2)} = jZ_1 Y_{in} \sin\beta l_1 \cos\beta l_1 + \cos 2\beta l_1$$
(4d)

Considering a section of TL as equivalent (Fig. 1(B)) to this T-shaped filter [15] and equating their ABCD matrices, results in:

$$M_{3} = \begin{bmatrix} \cos\beta l_{3} & jZ_{3}\sin\beta l_{3} \\ jY_{3}\sin\beta l_{3} & \cos\beta l_{3} \end{bmatrix} = M_{T}$$
(5)

At the angular pass frequency ω_p (with phase constant β_p), equating corresponding elements of matrices M_3 and M_T gives

$$Y_1 = Y_3 \left(\frac{\tan \beta_p l_1 \left(1 + \cos \beta_p l_3 \right)}{\sin \beta_p l_3} \right)$$
(6)

$$Y_{in} = \frac{jY_3 \sin \beta_p l_3 \left(\cos \beta_p l_3 - \cos 2\beta_p l_1\right)}{\cos^2 \beta_p l_1 \left(\cos \beta_p l_3 - 1\right)}$$
(7)

Using Y_{in} from equation (3) in equation (7) results in:

Brazilian Microwave and Optoelectronics Society-SBMO Brazilian Society of Electromagnetism-SBMag

received 07 Jul 2023; for review 17 Aug 2023; accepted 16 Feb 2024 © 2024 SBMO/SBMag [CC] BY ISSN 2179-1074

$$Y_2 = \frac{-B \pm \sqrt{B^2 - 4AD}}{2A} \tag{8}$$

 $A = \tan \beta_p l_2 \cos^2 \beta_p l_1 - \tan \beta_p l_2 \cos^2 \beta_p l_1 \cos \beta_p l_3$ $B = \omega C \cos^2 \beta_p l_1 + Y_3 \sin \beta_p l_3 \cos \beta_p l_3 - \omega C \cos^2 \beta_p l_1 \cos \beta_p l_3 - Y_3 \sin \beta_p l_3 \cos 2\beta_p l_1$ $D = \omega C Y_3 \sin \beta_p l_3 \tan \beta_p l_2 \cos 2\beta_p l_1 - Y_3 \omega C \tan \beta_p l_2 \sin \beta_p l_3 \cos \beta_p l_3$

A judicious choice of the equivalent TL section is important for the design as it can simplify the above equations. An electrical length (i.e. $\beta_p l_3$) of 90 degree simplifies these equations to

$$Y_1 = Y_3 \tan \beta_p l_1 \tag{9}$$

$$Y_{in} = \frac{jY_3 \cos 2\beta_p l_1}{\cos^2 \beta_p l_1}$$
(10)

 $A = \tan \beta_p l_2 \cos^2 \beta_p l_1$ $B = \omega C \cos^2 \beta_p l_1 - Y_3 \cos 2\beta_p l_1$ $D = \omega C Y_3 \tan \beta_p l_2 \cos 2\beta_p l_1$

These equations show that only the characteristic admittance of the stub line (Y_2) depends on the loading capacitance *C*. For ease of changing the capacitance, it is desirable to start with a zero capacitance which is equivalent to an open-ended stub. So, for initial design C = 0 is a desirable choice which simplifies the expression Y_2 as:

$$Y_2 = Y_3 \left[\frac{\cos 2\beta_p l_1}{\cos^2 \beta_p l_1 \tan \beta_p l_2} \right]$$
(11)

Equations (9) and (11) are sufficient for the initial design. However, they do not address the issue of selectivity.

A condition for good selectivity is $\frac{Y_1}{Y_2} \ge 1$ [8]. Using this condition in the equations (9) and (11) results in the inequality:

$$\frac{\tan 2\beta_p l_1 \tan \beta_p l_2}{2} \ge r_n \tag{12}$$

 r_n being the ratio of the two admittances. Thus, for a given length l_2 , equation (12) fixes the lower

limit on the length l_1 as:

$$l_1 \ge \frac{\tan^{-1} \left(\frac{2r_n}{\tan \beta_p l_2} \right)}{2\beta_p}$$
(13)

Similarly, equation (11) indicates the limit on $\beta_p l_1$ to be $\pi/4$. Therefore,

$$\frac{\tan^{-1}\left(\frac{2r_n}{\tan\beta_p l_2}\right)}{2\beta_p} \le l_1 \le \frac{\pi}{4\beta_p}$$

At the cut-off frequency, the stub must act as a short. As quarter wave open stub behaves like a short, so for a sharp cut-off, $\beta_p l_2$ (β_c being phase constant at cut-off frequency) should be $\pi/2$. If the ratio between cut-off and pass frequency is *r*, then $\beta_p l_2$ is $\pi/2r$.

A. Algorithm for initial design

The calculations of the dimensions in the design follow an algorithm, the steps of which are presented below. Different parameters used in the algorithm are: W_{min} - the smallest width that can be fabricated in the laboratory; ω_p - angular pass frequency; c - speed of light in free space; ω_c - angular cut-off frequency; ε_r - substrate relative permittivity; Z_3 - characteristic impedance of imaginary transmission line; r - the ratio of cut-off to pass frequency; r_n - the ratio of stub to main line characteristic impedances.

BEGIN

Step 1: Initialize the parameters W_{\min} , ω_p , r, ε_r , $Z_3 = 50\Omega$

Step 2: Calculate
$$\omega_c \leftarrow r\omega_p; v \leftarrow \frac{c}{\sqrt{\varepsilon_r}}\beta_p \leftarrow \frac{\omega_p}{v}; \frac{\beta_c\omega_c}{v}$$

Step 3: Calculate
$$l_3 \leftarrow \frac{\pi}{2\beta_p}, \ l_2 \leftarrow \frac{\pi}{2r\beta_p}$$

Step 4a: Set
$$r_n > 1$$

Step 4b: Set
$$l_1 \leftarrow \frac{\tan^{-1} \left(\frac{2r_n}{\tan \beta_p l_2} \right)}{2\beta_p}$$

Step 5: If
$$\beta_p l_1 \ge \frac{\pi}{4}$$

Brazilian Microwave and Optoelectronics Society-SBMO Brazilian Society of Electromagnetism-SBMag

then

choose new r_n and go to step 4b

else

go to step 6

Step 6: Calculate $Y_1 \leftarrow Y_3 \tan \beta_p l_1$

Step 7: Calculate W for Y_1

If $W < W_{min}$ then select new r_n and go to step 4b else go to step 8

Step 8: Find $Y_2 \leftarrow \frac{Y_1}{r_n}$

END

A capacitive loading of the shunt stub tunes the cut-off frequency of the initial T-shaped TL BSF design. At the tuned cut-off frequency, the capacitance loaded shunt stub must act as a short circuit. So the denominator of equation (3) should vanish at the cut-off frequency. Accordingly, the required capacitance for the desired cut-off frequency is

$$C = \left(\frac{Y_2}{\omega_c}\right) \cot \beta_c l_2 \tag{14}$$

The capacitance also affects the pass frequency (ω_p) . The relationship between pass frequency and capacitance using equations (3) and (4a) is

$$\omega_{p} = \left(\frac{Y_{2}}{C}\right) \left(\frac{2Y_{1}\cos 2\beta_{p}l_{1} - Y_{2}\tan\beta_{p}l_{2}\sin 2\beta_{p}l_{1}}{2Y_{1}\tan\beta_{p}l_{2}\cos 2\beta_{p}l_{1} + Y_{2}\sin 2\beta_{p}l_{1}}\right)$$
(15)

Using the tuning capacitance obtained from equations (14) in (15) and applying simple numerical techniques, one can determine the pass frequency.

III. RESULTS AND DISCUSSION

Here, a simple BSF design with $f_c = 2 \text{ GHz}$, r = 2 ($f_p = 1 \text{ GHz}$) illustrates the application of the proposed design theory. As mentioned in the algorithm, the design assumes $Z_3 = 50 \Omega$. It also obtains l_3 and l_2 to be 35.75 mm and 17.79 mm, respectively. The next step is determination of r_n .

Fig. 2. Comparison of selectivity for different r_n values using HFSS

Fig. 3. Measured and simulated S-parameters of the BSF without tuning capacitance (C=0; inset: Fabricated T shaped BSF prototype)

Figure 2 illustrates the selectivity for different r_n values. It is observed that $r_n = 2$ yields good selectivity. Although selectivity improves further with increasing r_n , it becomes difficult to realize a trace of smaller width to match the characteristic impedance of the TL section. Therefore, $r_n = 2$ is a good choice for this design. Accordingly, $l_1 = 15.1$ mm, $Y_1 = 0.0156$ \Im ($W_1 = 1.96$ mm), and $Y_2 =$ 0.0078 \Im ($W_2 = 0.3$ mm) where W_1 and W_2 are widths of the respective TL sections. The resulting Tsection prototype is fabricated using FR4 epoxy with a relative permittivity 4.4 and a loss tangent of 0.02, employing the wet etching technique.

Fig. 4. Comparison of theoretical, simulated, and measured frequencies (cut-off and pass) for different values of capacitances (inset: Fabricated tunable BSF prototype)

Figure 3 compares simulated and measured results for a prototype fabricated filter (Fig. 3: inset). The center frequencies of the pass-band and stop-band correspond to dips in S_{11} and S_{21} . From the figure these two frequencies are around 1 GHz and 2 GHz, respectively. The measured result follows the simulated one closely.

The plots in Fig. 4 show that as the capacitive load varies from 0 pF to 1.1 pF, the center frequencies of the stop-band and pass-band vary from 2 GHz to 1.047 GHz, and 1 GHz to 111 MHz, respectively. In addition to tuning, the stop-band rejection depth and the fractional bandwidth $(=\frac{\Delta f}{f} \times 100\%$, where, Δf is the difference between the band edges and f_c is the center frequency) of the filter are also obtained [4], [16]. This proposed filter exhibits 50dB rejection with around 36% -3dB fractional bandwidth. The 30dB roll-off factor $\left(\zeta = \frac{\alpha_{30dB} - \alpha_{3dB}}{f_{30dB} - f_{3dB}}\right)$ is found to be 190dB/GHz,

received 07 Jul 2023; for review 17 Aug 2023; accepted 16 Feb 2024 © 2024 SBMO/SBMag (cc) BY

which justifies high selectivity [17]. Inset of Fig. 4 shows the prototype of a fabricated filter with varactor (SMV2019-79LF) loaded shunt stub. This inset shows the tuning arrangement using the varactor and DC blocking capacitor. Application of DC bias changes the capacitance of the varactor. Figure 4 shows the tuning of cut-off frequency with the change in capacitance. It also shows the effect of capacitance on pass frequency. The separation between cut-off and pass frequency remains almost constant with change in capacitance. The curves corresponding to measurement, theory, and simulation have good matching. Thus, the proposed theory is appropriate in terms of validation with EM simulation and measurement. The *S*-parameters of all prototypes are measured using the Anristu MS46122B VNA (Fig. 5(A)). Figure 5(B) represents the schematic diagram of the measurement setup.

(A)

Brazilian Microwave and Optoelectronics Society-SBMO Brazilian Society of Electromagnetism-SBMag received 07 Jul 2023; for review 17 Aug 2023; accepted 16 Feb 2024 © 2024 SBMO/SBMag (C) BY ISSN 2179-1074

Fig. 5. Measurement setup using ANRISTU MS46122B VNA

Fig. 6. -3dB bandwidth of the BSF for different tuning frequencies

References	Tuning	Rejection	Frequency Tuning	Fractional	Stop-Band	Roll-off Factor
	Mechanism	(dB)	Range (GHz)	Bandwidth	Return Loss	ζ
				% @ -3dB	(dB)	-
[4]	Varactor	27	0.66-0.99 (40%)	18	0.8	>195
[18]	Varactor	>40	2.22-3.13 (34%)	0.5	0	>45
[19]	Varactor	30	11.3-16.5 (37%)	14.36	1.5	>31.76
[5]	SIW	25	2.8-3.4 (19%)	> 3.1	1.5	>115
[20]	SIW	40	2.66-3.34 (23%)	0.035	0.79	>135
[9]	Graphene	28	2.308-3.143 (34%)	>40	NA	>68
[10]	MMIC	>40	8.7-10.5 (19%)	> 7.73	NA	>45
[21]	Micromachine	>30	4-8 (67%)	> 6	> 1	>400
[22]	Substrate	30	3.6-4.6 (24%)	>5.54	2	>150
	integrated					
	Coaxial (SIC)					
This Work	Varactor	>50	1.047-2.00 (63%)	36±6	0.14	190

TABLE I. PERFORMANCE COMPARISON TABLE

Figure 6 shows the effect of tuning cut-off frequency (2 GHz to 1.047 GHz) on -3dB bandwidth. The fractional bandwidth increases with increasing cut-off frequency. Table I compares the prototype with the state-of-art designs in the literature in terms of design metrics such as fractional bandwidth, tuning range, rejection, stop-band return loss, and selectivity. The table shows that the prototype has a broad tuning range, high selectivity, and high rejection depth compared to other reported BSFs. Moreover, it

received 07 Jul 2023; for review 17 Aug 2023; accepted 16 Feb 2024 © 2024 SBMO/SBMag (C) EY ISSN 2179-1074

has the simplest design compared to other such tunable BSFs.

IV. CONCLUSIONS

This work focused on designing a high selective tunable but simple BSF. It developed the appropriate theory for analyzing a capacitively-loaded T-shaped TL BSF. Then, it extended this theory to obtain design parameters like characteristic impedances and tuning capacitance for high selective BSF. It verified the developed theory with EM simulations and measurements on prototypes. Fabrication limitations at our laboratory restrict dimensions up to 1 decimal point in mm, requiring rounding up the calculated dimensions. In practice, it marginally affects the characteristic impedance and electrical length, which may be the reason for minor discrepancies between calculated, simulated and measured results. The developed theory can find applications in tunable BSF design using varactors and other loading elements.

ACKNOWLEDGMENT

Amit Kumar Sahu acknowledges the Council of Scientific and Industrial Research (CSIR), Govt. of India for providing fellowship (File No.: 09/297(0077)/2017-EMR-I, dated: 09/08/2018). We are thankful to Prof. R. K. Mishra, Berhampur University, for his valuable suggestions.

REFERENCES

- A. Zahedi, F. A. Boroumand, and H. Aliakbrian, "Analytical transmission line model for complex dielectric constant measurement of thin substrates using T-resonator method," *IET Microwaves, Antennas & Propagation*, vol. 14, pp. 2027–2034, 2020.
- [2] A. Rajput and B. Mukherjee, "Electronically tunable UWB band stop filter using varactor diode," *AEU International Journal of Electronics and Communications*, vol. 164, p. 154610, 2023.
- [3] K. D. Chavda and A. K. Sarvaiya, "Development of reconfigurable band stop filter using metamaterial for WLAN application," 2022 Photonics & Electromagnetics Research Symposium (PIERS), pp. 854–861, 2022.
- [4] A. Ebrahimi, T. Baum, J. Scott, and K. Ghorbani, "Continuously tunable dual-mode bandstop filter," *IEEE Microwave and Wireless Components Letters*, vol. 28, pp. 419–421, 2018.
- [5] S.W. Jeong and J. Lee, "Frequency- and bandwidth-tunable bandstop filter containing variable coupling between transmission line and resonator," *IEEE Transactions on Microwave Theory and Techniques*, vol. 66, pp. 943–953, 2018.
- [6] J. Hinojosa, M. Rossi, A. Saura-Ródenas, A. Álvarez-Melcón, and F. L. Martínez-Viviente, "Compact bandstop halfmode substrate integrated waveguide filter based on a broadside-coupled open split-ring resonator," *IEEE Transactions* on Microwave Theory and Techniques, vol. 66, pp. 3001–3010, 2018.
- [7] W. Xu *et al.*, "Tunable bandstop HMSIW filter with flexible center frequency and bandwidth using liquid crystal," *IEEE Access*, vol. 7, pp. 161308–161317, 2019.
- [8] Y. Kusama and R. Isozaki, "Compact and broadband microstrip band-stop filters with single rectangular stubs," *Applied Sciences*, vol. 9, 2019.
- [9] H. Abunahla, R. Gadhafi, B. Mohammad, A. Alazzam, M. Kebe, and M. Sanduleanu, "Integrated graphene oxide resistive element in tunable RF filters," *Scientific Reports*, vol. 10, p. 13128, 2020.
- [10] K. Zhao and D. Psychogiou, "X-band MMIC-based tunable quasi-absorptive bandstop filter," *IEEE Microwave and Wireless Technology Letters*, vol. 33, pp. 391–394, 2023.
- [11] C.-H. Ko, A. Tran, and G. M. Rebeiz, "Tunable 500–1200-MHz dual-band and wide bandwidth notch filters using RF transformers," *IEEE Transactions on Microwave Theory and Techniques*, vol. 63, pp. 1854–1862, 2015.
- [12] M. Fan, K. Song, Y. Zhu, and Y. Fan, "Compact bandpass-to-bandstop reconfigurable filter with wide tuning range," *IEEE Microwave and Wireless Components Letters*, vol. 29, pp. 198–200, 2019.
- [13] Y. I. A. Al-Yasir *et al.*, "A varactor-based very compact tunable filter with wide tuning range for 4G and sub-6 GHz 5G communications," *Sensors*, vol. 20, 2020.
- [14] Y. Wang, J. Chen, and K.-D. Xu, "A system of tunable bandstop filters with wide tuning range of 1-6-GHz," in 2019 International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), pp. 1–2, 2019.

- [15] W. H. Tu and K. Chang, "Compact second harmonic-suppressed bandstop and bandpass filters using open stubs," *IEEE Transactions on Microwave Theory and Techniques*, vol. 54, pp. 2497–2502, 2006.
- [16] J. S. Hong, and M. J. Lancastera, *Microstrip filters for RF/microwave applications*, John Wiley & Sons Ltd, pp. 29–76, 2001.
- [17] M. Hayati, S. Naderi, and F. Jafari, "Compact microstrip lowpass filter with sharp roll-off using radial resonator," *Electronics Letters*, vol. 50, pp. 761–762, 2014.
- [18] M. K. Mandal, J. Mandal, and M. Kahar, "Electronically tunable dual-band bandstop filter using a folded microstrip coupled-line," in 2018 IEEE MTT-S International Microwave and RF Conference (IMaRC), pp. 1–4, 2018.
- [19] Q. Li, X. Chen, P.-L. Chi, and T. Yang, "Tunable bandstop filter using distributed coupling microstrip resonators with capacitive terminal," *IEEE Microwave and Wireless Components Letters*, vol. 30, pp. 35–38, 2020.
- [20] S. Nam, B. Lee, and J. Lee, "Frequency-tunable substrate-integrated waveguide filter using contactless rotatable flaps," in 2019 IEEE MTT-S International Microwave Symposium (IMS), pp. 842–845, 2019.
- [21] Y. Feng, S. Tiwari, S. A. Bhave, and R. Wang, "Micromachined tunable magnetostatic forward volume wave bandstop filter," *IEEE Microwave and Wireless Technology Letters*, vol. 33, pp. 807–810, 2023.
- [22] D. Psychogiou, K. Zhao, and R. Gómez-García, "Dual-bandstop substrate-integrated-coaxial tunable and static RF filters," *IEEE Microwave and Wireless Components Letters*, vol. 31, pp. 1271–1274, 2021.

received 07 Jul 2023; for review 17 Aug 2023; accepted 16 Feb 2024 © 2024 SBMO/SBMag (C) BY ISSN 2179-1074