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ABSTRACT – In most areas, psychological phenomena tend to be explained only through textual constructions. Several 
authors, however, point to the need for theories that have a more formal nature, based on mathematical reasoning. In order 
to encourage broader access to its applications, we present the models and advantages of a mathematical psychology 
approach to the study of behavior. We review the limitations of verbal theorizing, then a common taxonomy in mathematical 
psychology follows, that classifies formal models as descriptive, process characterization, and explanatory. As well succeeded 
cases, we examine the mathematical psychology of decision making, of helping behavior, of memory, and of romantic 
relationships. Finally, we discuss the potential benefits and uses of this approach. Welcome to mathematical psychology.
KEYWORDS: mathematical psychology, formal theorizing, quantitative modeling

Convite à Psicologia Matemática: Modelos e Benefícios  
da Teorização Formal

RESUMO – Na maior parte das áreas os fenômenos psicológicos tendem a ser explicados apenas por meio de construções 
textuais. Diversos autores, no entanto, apontam para a necessidade de teorias que tenham uma natureza mais formal, 
baseada em raciocínio matemático. A fim de incentivar acesso mais amplo às suas aplicações, apresentamos os modelos e 
vantagens da abordagem da psicologia matemática para o estudo do comportamento. Revisamos as limitações da teorização 
verbal, apresentando em seguida uma taxonomia, comum na psicologia matemática, que classifica os modelos de dados 
como descritivos, explicativos e de caracterização. Como casos bem sucedidos, examinamos a psicologia matemática da 
tomada de decisão, do comportamento de ajuda, da memória e dos relacionamentos românticos. Por fim, discutimos os 
benefícios e usos potenciais da abordagem. Bem-vindo(a) à psicologia matemática.
PALAVRAS-CHAVE: psicologia matemática, teorização formal, modelagem quantitativa

From the classic definitions of William James and Wilhelm 
Wundt to their contemporary adaptations, psychology is 
broadly understood as the science of behavior and mental 
processes. Therefore, in addition to seeking to describe and 
predict the behavior of humans and other animals, we also 
seek to explain it. This is similar to how in physics it is 
possible to predict the “behavior” of an object thrown in the 
air, in addition to identifying which variables can influence 
its trajectory. In psychology, however, well-defined physical 
properties are often not evaluated.

Traditionally in the various subareas of psychology, 
when a theoretical research question is asked, the answer 
is developed through verbal theorization, that is, the 
phenomenon is explained using only textual constructions 
(Adner et al., 2009). Although this method is dominant and 
efficient so that anyone can interpret and understand the 
expected relationships between the relevant variables of 
a model, at least two problems can be derived (McGrath, 
2011). First, predictions are often not clearly defined, both 
in terms of the direction and magnitude of the phenomenon. 
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Second, certain behaviors that can be expected from certain 
variables, or from relationships between variables, are not 
easily described through verbal theorizing. On the other 
hand, in recent years psychology has gone through a crisis 
of replicability and criticism of its methodological and 
analytical practices (Nelson et al., 2018), which require 
greater investment in the underlying processes of theorization.

The main objective of the present work is to provide an 
introduction to the approach of the so-called mathematical 
psychology, describing the types of mathematical models that 
can be used in different areas of psychology. It is also intended 
to summarize the main advantages and benefits of formal 
theorizing, as an alternative invitation to traditional verbal 
theorizing, without the need for an exhaustive understanding 
of the mathematical models and techniques themselves 
(see, e.g., Coombs et al., 1970; Hunt, 2006). Thus, it is also 
sought to demonstrate that the mathematical description of 
psychological phenomena is not so complex and can be easily 
learned by any student or researcher in psychology without 
advanced training in arithmetic, algebra or geometry.

Mathematical Psychology: Modeling and 
formal theorizing

Mathematics, as a field of general knowledge, is concerned 
with the study of structures and patterns resulting from a 
series of axioms or assumptions (Devlin, 2012). Mathematics 
can also be considered a form of language, responsible for 
communicating the dynamics and, unequivocally, magnitude, 
direction and meaning of variables, as well as relationships 
between variables (Pasquali, 2001). Psychologists who use 
mathematics as a primary tool to describe their phenomena 
of interest are known as mathematical psychologists 
(Townsend, 2008).

The approach of mathematical psychology is at least as 
old as scientific psychology itself (Van Zandt & Townsend, 
2012). Among the first mathematical psychologists, many 
being recognized as the creators of psychophysics, it is 
possible to identify Ersnt Weber (1795–1878), Gustav 
Fechner (1801–1887), Hermann von Helmholtz (1821–1894), 
Franciscus Donders (1818-1889), among others. However, 
the systematization of the approach took place only in the 
1950s, after the initial development of three specific theories: 
(i) the signal detection theory; (ii) information theory 
and its applications in cognitive psychology; and (iii) the 
mathematical theory of learning. In the following decade, 
two of the most influential book series in the field (i.e., Luce 
et al., 1963-1965a; 1963-1963b) and the most influential 
journal in the field (i.e., Journal of Mathematical Psychology) 
were published, consolidating the approach. As manuals 
in the area reveal (e.g., Batchelder et al., 2016), in modern 

mathematical psychology the most diverse topics are studied, 
from the most basic psychological processes to complex 
dynamics between groups, as well as the development of 
Artificial Intelligences that simulate emotions.

In practical terms, one of the main foundations of 
mathematical psychology is the use of formal theorizing. 
Formal theorizing, using formal logic and mathematics, 
contrasts substantially with verbal theorizing (Doignon & 
Falmagne, 1991). While verbal theorization allows flexible 
understanding of a phenomenon due to the diversity of natural 
languages (e.g., Portuguese), formal theorization involves a 
mathematical and logical description of the phenomena of 
interest (Devlin, 2012). Thus, for those phenomena that can 
be clearly measured, formal theorization tends to be more 
objective (that is, less dependent on different perceptions 
and judgments) and provide possibilities for more robust 
hypothesis testing to assess the predictive power of a model. 
On the other hand, it should be noted that although, in 
principle, any area of study in psychology can be studied 
using the approach of mathematical psychology, some topics 
will be more favorable than others. In addition, the quality of 
theories involves issues beyond the theory itself, such as the 
most appropriate way to operationalize a variable of interest. 
In this way, verbal and formal theorizations are understood 
as complementary ways of understanding, defining and 
studying a phenomenon.

As an example of a possible application of mathematical 
psychology, imagine that we develop a theory of helping 
behavior that verbally proposes that people in uncertain 
situations tend to be less helpful to others. A formal 
theorization about the same phenomenon, however, 
would need to propose a mathematical model about what 
percentage is expected to be observed at each possible 
level of uncertainty. Hypothetically, some researcher in the 
field could say that the probability of emitting a helping 
behavior decreases according to a logistic function of 
the uncertainty in the situation, being dependent on two 
psychological factors (or parameters): (i) α (alpha), defined 
as the fundamental tendency not to help; and (ii) ψ  (psi), 
defined as the importance of uncertainty. Such theorization 
can be described by the following equation:

( )
1Probability of help

1 exp  Uncertaintyα ψ
=

+ +

Figure 1 presents a graphic representation of such a model, 
revealing its simplicity. For the line drawn in Figure 1, α is 
equal to –3 and ψ  is equal to 6. These values allow us to 
conclude, for example, that when the uncertainty is equal 
to 0, the probability of helping will be close to 95%. This 
value is easily calculated by applying the theory formula: 

( ) ( ) ( )
1 1 1Probability of help 0.95

1 exp  Uncertainty 1 exp 3  6 0 1 exp 3α ψ
= = = =

+ + + − + × + −
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Note that, in addition to empirically defining two 
constructs (fundamental tendency not to help and the 
importance of uncertainty) fundamental to the theory, verbal 
theorization makes a specific prediction about what to observe 
in a given context (that is, what behavior is expected in the 
presence or absence of uncertainty).

It can also be observed, in Figure 1, that quadrants 1 and 3 
present the non-support for the theory, whether it is proposed 
verbally or formally. Pragmatically, the values observed in 
these quadrants would indicate cases where uncertainty is 
low (or high) and there is low (or high) probability of help. 
In this example, the biggest difference is precisely which 
observations constitute evidence in favor of the theory. 
Taking into account verbal theorizing, any value observed in 
quadrants 3 and 4 would indicate evidence favorable to the 
theory. For formal theorizing, however, only values above 
or very close to the inverted “S” shaped line would indicate 
evidence about the validity of the theory. That is, in the case 
where α is equal to –3 and ψ is equal to 6, if the uncertainty 
is equal to 0 but the probability of help is very different from 
95%, we can reject the theory. Such an example allows us 
to identify that an intuitive understanding of the formulas 
can already be useful and sufficient for the application of 
mathematical psychology techniques in theorization.

In psychology, when taken as a whole, there seems to be 
a preference for using quantitative methods of data analysis 
(Mertens, 2014). But ironically, formal theorizing is still used 
on a small scale (Townsend, 2008). Here, it is necessary 
to distinguish the “quantitative psychologist” from the 
“mathematical psychologist”. The quantitative psychologist 

is one who uses statistical and mathematical tools to test 
his hypotheses, but such tools do not present a specific 
psychological interpretation. For example, analyses such 
as Student’s t-test, ANOVAs, regression analysis and, more 
recently, machine learning tools (Yarkoni & Westfall, 2017), 
can be used to test the same hypothesis about any scientific 
theory. The mathematical psychologist, on the other hand, is 
the one who develops formal models that are often specific to 
their research problem. For example, in the model represented 
in Figure 1, changing the statistical or mathematical procedure 
to test the problem would have the consequence of testing 
a theory different from the one proposed and, therefore, 
the lack of adequacy of the chosen procedure. However, 
it should be noted that many models, whether statistical or 
developed by mathematical psychologists, can be considered 
as an extension of regression analysis (e.g., Busemeyer et al., 
2015). Thus, what characterizes a model as “statistical” or 
“psychological” is more related to the interpretability of the 
parameters as a psychological process, constructs or events, 
than to the mathematical form of the models themselves.

Given these considerations, it is important to clearly 
define what a mathematical model is and how it can be 
used. For this, it is necessary to recognize that models are 
intentionally more parsimonious and more abstract than the 
real system they seek to explain (Fum et al., 2007). As in the 
famous aphorism popularized by Box and Draper (1987, p. 
74), “all models are wrong, but some are useful”. Thus, by 
definition, models will always be simpler than reality and 
should never be too complex, given the inconsistency of 
replacing something that is not fully understood (reality) with 

Figure 1. Quadrants of possible prediction values by verbal and formal models of helping behavior.
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something that cannot be understood either (Norris, 2005). 
This obviously raises the problem of defining which details 
are necessary and which are minor for the problem studied. 
Although there is no single answer, some suggestions can 
be made depending on the purpose of the proposed model. 
Lewandowsky and Farrell (2010) recognized the existence of 
different typologies to name the purpose of the model. At the 
same time, they propose a specific typology that divides the 
process according to the objective of the model: to describe, 
characterize or explain a given phenomenon.

The Types of Models and Their Objectives

Descriptive

Descriptive models are those explicitly devoid of 
psychological content. Being “devoid of psychological 

content” means that while such models can predict and 
describe observed data, as well as set some limitations on 
underlying psychological processes, they do not specify 
how such processes contribute to the observed outcome. 
Our example presented in Figure 1 is a case of a descriptive 
model. Although the parameters can be interpreted as 
psychological constructs, the model does not tell us what 
psychological processes are taking place while individuals 
are deciding whether or not to help. For example, the model 
used in Figure 1 does not define the relationship between 
the fundamental tendency not to help and effective behavior. 
Thus, descriptive models cannot define which other variables 
inherent to them can influence the observed result.

In order to further discuss descriptive models, one can 
use a very common example in the learning literature: what 
is the best way to describe the acquisition of knowledge 
over time (Heathcote, Brown & Mewhort, 2000)? At the top 
of Figure 2 there is, on the x axis, the number of attempts 

Figure 2. Two types of models. At the top, data plotted according to two competing descriptive models of learning. At the bottom, characterization model 
on short-term memory retrieval.
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and, on the y axis, the reaction time for the response of 
already knowing or not a stimulus. It can be seen that, as the 
number of trials increases, the reaction time for the response 
decreases. The dots represent the answers themselves, while 
the lines, solid and dotted, represent predictions made by two 
different theories. Although the difference between the lines 
is visually subtle, they have virtually opposite theoretical 
implications. The model represented by the solid line says 
that the rate of learning is constant, but that there is less 
and less information to learn. The model represented by the 
dotted line says that the learning rate is variable, but that the 
amount of information to learn is constant. In this example, 
both models “describe” the data equally well. However, they 
are devoid of psychological content: there is no information 
available that allows concluding which competing model is 
the most adequate or most plausible to describe the learning 
process. It is therefore necessary to gather other evidence 
to conclude which model best describes the underlying 
processes.

Characterization

The second type of model includes those that categorize 
a psychological process and some main aspects stand out. 
They define which are the relevant unobservable processes, or 
else the relationships between observable and unobservable 
variables, and then proceed with the necessary measures. 
Another aspect is that this type of model does not attempt 
to explain how the underlying processes that influence the 
way in which hypothetical mental constructs generate certain 
outcomes occur, but only the order in which they occur.

As an example of a characterization model, we can 
mention the multinomial tree processing model for short-term 
memory retrieval, proposed by Schweickert (1993). The 
bottom part of Figure 2 shows the characterization of the 
short-term memory retrieval process, which can be retrieved 
in two cases: as a consequence of the complete storage of 
information or as a consequence of the reconstruction of 
a partially stored memory. In this case, the probability of 
recovering the stored memory completely is equal to C. 
On the other hand, the probability of the memory being 
recovered, given that it was only partially stored, is equal 
to (1 – C) × R. In addition, the model proposes that there 
is also the possibility that memory will not be recovered. 
This only occurs when, after the memory has only been 
partially stored, it is also not rebuilt. The probability of this 
happening is equal to (1 – R) × (1 – C). But the model does 
not identify which processes influence the probability of 
information being correctly stored, nor those that influence 
partial memory reconstruction.

Explanatory

The third and last type of model is so named because 
it allows, taking into account current techniques, the best 
way to make inferences about psychological constructs. 

Like characterization models, it deals with psychological 
constructs, but it goes a step further by providing detailed 
explanations of them. As seen, Schweickert’s (1993) 
multinomial tree-processing model identifies the stage of 
memory reconstruction, but does not give any indication of 
exactly how this process might take place. An explanatory 
model, however, was proposed by Lewandowsky and Farrell 
(2000), in which the reconstruction process occurs through 
a constant flow of exchanges between a response and a 
storage system, until the memory is completely restored. 
Due to the complexity of the mathematical model, it will 
not be presented here (see Kahana, 2020, for a more detailed 
explanation). However, it remains evident that the authors’ 
proposal on how the reconstruction process takes place was 
all described using a mathematical model.

One might ask, in view of the revised models: since it 
is possible to specify them at the level of complexity, why 
are they not all elaborated as the type of explanation? First, 
it is not always possible to specify a process in the minute 
detail that an explanatory model requires. Thus, less complex 
models are a valuable alternative for research in a certain 
area to continue to develop. Not coincidentally, descriptive 
models are much more popular in psychology. Furthermore, 
there are cases in which a simpler characterization model 
may be preferred to one with a very detailed explanation.

Using a traditional t-test to compare the average difference 
in test performance between a control and an experimental 
condition is generally more practical than developing an 
explanatory model with individual estimates. However, in 
the case of public policies on education, for example, using 
a simpler model, but based on data collected from a good 
research design, can be more efficient. After all, a simple and 
robust result is better than using an explanatory model that 
is more susceptible to threats to the validity of the results. 
However, descriptive-level modeling in psychology has 
already allowed researchers to identify many principles for 
the field as a whole (e.g., Brown et al. 2007).

Benefits of Formal Theorizing

Lewandowsky and Farrell (2010) pointed out at least six 
distinct benefits of formal theorizing over verbal theorizing. 
The first two benefits are related to the interpretability of 
research data. Since data never “speaks for itself”, it is 
necessary to use models to interpret it. The more accurate the 
model, the better the data can be interpreted. Furthermore, 
verbal theorization, by itself, does not allow the establishment 
of adequate parameters for quantitative analyses. Thus, if one 
wishes to pursue a more quantitative approach in psychology, 
treating the problem from the beginning as a mathematical 
problem will be more beneficial than changing the data to 
fit the method of analysis.

Another couple of benefits involve comparing alternative 
models. There are always numerous alternative models that 
explain the collected data equally well (as shown in Figure 2). 

 



6 Psic.: Teor. e Pesq., Brasília, 2023, v. 39, e39515

VR Franco & F Iglesias

When verbal theorizing is used, the lack of precision can 
make it very difficult to identify competing models and 
explanations for a phenomenon. At the same time, formal 
theorization also makes it possible to establish the best 
criteria for quantitative assessment of model comparisons, 
which can be complemented, as in verbal theorization, by 
the judgment of experts.

Finally, the last pair of benefits proposed by Lewandowsky 
and Farrell (2010) involve the limitations of verbal theorizing. 
Even quite intuitive verbal theories can be incoherent and 
poorly specify their consequences. This occurs because of 
what precisely makes natural language so rich: subjectivity 
in the interpretations of its meanings. Thus, when using 
models developed by verbal theorization, it is often not 
possible to guarantee that all the assumptions of a theory 
have been identified and tested.

The Influence of Formalization on 
Psychology

The study field of decision-making processes is 
probably the best example of the success and application of 
mathematical psychology approaches (Baron, 2007). This 
field has a multidisciplinary nature, but with contributions 
coming mainly from psychology and economics (Fischhoff 
& Broomell, 2020). The models that explain such decision-
making processes are generally divided into two types: 
normative and descriptive (Baron, 2007). Normative models 
are those concerned with identifying the best decision to 
make, assuming that the decision maker is fully informed, 
is able to calculate with perfect accuracy, and wants to 
maximize utility. These models depart from an econometric 
tradition and are heavily based on formal theorizing from 
utility theory (Simon, 1959). In this tradition, “utility 
maximization” by individuals is regarded as the definition 
of rational behavior. Descriptive models, on the other hand, 
are those that describe observed behaviors, with the general 
assumption that decision-making agents behave according 
to some consistent rules. They are more influenced by 
psychological theories and generally come from verbal 
theorizing (Janis & Mann, 1977). In these cases, rational 
behavior is defined as the maximization of utility, given 
that there are psychological biases and the influence of the 
environment during the decision process. A special type of 
descriptive model is one that involves social and situational 
variables in the decision process, thus being called social 
decision-making processes (e.g., Edwards, 1977).

The greatest contribution to understanding social 
decision-making processes came from the prospect theory 
of Kahneman and Tversky (1979). This theory, which 
earned Kahneman a Nobel Prize in economics (Altman, 
2004), started from utility theories, but with less emphasis 
on rationality assumptions. This was due to the fact that the 

authors intended to create a descriptive model of decision 
making, while the data showed that people did not always 
maximize utility as expected (Stanovich, 2015).

Kahneman and Tversky found, from a series of studies 
mixing methodological paradigms from both social 
psychology and mathematical psychology, three regularities 
in the social decision-making process: (i) people perceive 
losses that are proportional to gains as of greater relative 
magnitude; (ii) people pay more attention to changes in 
their utility states (i.e., how good a certain object is at a 
given moment) rather than absolute utility values; and 
(iii) subjective probability estimates are influenced by 
cognitive biases. The impact of this theory opened doors 
for the investigation of heuristics in social decision-making 
processes and for the creation of the area of behavioral 
economics (Kahneman, 2003). In addition, in a more modest 
way as a whole, but very strong for the area of mathematical 
psychology, it configured a rescue of formal theorizing 
methods and their importance for psychology.

Despite the success of prospect theory, more recent 
research shows that it can often not describe people’s 
behavior as well (Yukalov & Sornette, 2008). This is an 
argument widely developed, for example, by Gigerenzer and 
Murray (2015), in addition to authors of the Minskyian and 
resource-rational approach, as well as other less popular ones 
(see Lieder & Griffiths, 2020, or Millroth & Collsiöö, 2020, 
for further discussion). Among these alternatives to prospect 
theory, quantum models of information processing are the 
most innovative and contemporary (Bruza et al., 2015). Such 
models are characterized by using the mathematical language 
developed in quantum physics to address the theoretical 
issues of psychology. However, the models do not need to 
assume the existence of quantum processes in the brain or 
mind. The authors who defend such models only propose 
that the observed consequences of cognitive processes are 
mathematically better described and explained by the same 
type of mathematics used to describe and explain quantum 
phenomena in physics (for more details, Busemeyer & 
Bruza, 2012).

A basic feature of prospect theory that can be solved by 
quantum models is related to the presupposition of preference 
transitivity (Regenwetter et al., 2011). Such an assumption 
says, for example, that if an individual prefers to drink water 
instead of drinking beer and also prefers to drink beer instead 
of drinking juice, he should prefer drinking water instead of 
drinking juice. However, the breach of this assumption is 
constantly identified in research on preference and decision 
making (e.g., Kocher & Sutter, 2005; Smaldino & Epstein, 
2015). The transitivity assumption is fundamental for prospect 
theory, as it depends on the classical logic that composes 
traditional models of rational choice. In the mathematical 
theory that underlies the quantum models, the expected 
consequence is that people’s preferences are not fixed and 
that they depend, for example, on the order in which certain 
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events occur (Bruza et al, 2015). Thus, quantum models 
make extra predictions when compared to prospect theory 

models, depending on what limitations the research design 
imposes on the decision process.

FINAL CONSIDERATIONS

Despite the advantages, benefits and success presented 
in relation to the use of the mathematical psychology 
approach, obviously its use in psychology, in general, is 
still quite shy. Falmagne (2005) pointed out as one of the 
main reasons for this the decline in mathematics education 
and also, in some cases, the precarious effectively scientific 
training in many psychology courses. Although the author 
says that these reasons are mostly based on anecdotal 
evidence, in support of his argument he pointed to the fact 
that statistics textbooks for psychologists present less and 
less mathematics (e.g., “Statistics without mathematics”, by 
Dancey & Reidy, 2006). In addition, many universities have 
discontinued teaching and research programs specifically 
focused on mathematical psychology, merging them with 
others. Townsend (2008) agreed with such questions by 
examining the past and estimating the future of the approach. 
In any case, researchers working with mathematical modeling 
and formal theorizing as a whole have still made significant 
contributions to psychology (Hunt, 2006; Townsend, 2008).

As an example of use that has a more generalized 
interest, one can cite the model of interactions of romantic 
partners by Gottman et al. (2002), inspired by the theory of 
the general system of families suggested by Von Bertalanffy 
(1968). In this model, it is assumed that each person has 
certain personality traits that influence the probability of 
occurrence of positive characteristics in their speech. In 
turn, the affective quality of speech is also influenced by the 
affectivity expressed in the previous social exchange with 
the person with whom he communicates. Furthermore, it 
is also assumed that messages that express negative affect 
have greater influences on interaction than messages that 
express positive affect. The model has several theoretical 
and applied implications, in the clinic, for example, although 
its influence still seems small (Amato, 2007).

As pointed out by Luce (1995; 1997), there are at 
least six major barriers that need to be overcome so that 
mathematical approaches and formal theorizing are better 
recognized in psychology. First, such approaches need to be 
taught in more psychology departments. Second, there must 
be a greater effort to develop methods that facilitate the use 
of more complex techniques, such as the use of quantum 
models. Third, more focus should be placed on developing 
higher quality measures and better statistical methods for 
evaluating such measures. In addition, excessive use of 
variables based on theories that have been previously refuted 
should be reduced. Then, existing contributions should 
serve as a basis for building more reliable models. The last 
barrier is related to the fact that, many times, models are 
tested without taking into account the best measurement 
level of the variables that compose it (nominal, ordinal, 
interval or ratio).

Finally, such problems can make formal theorizing, 
and more specifically, mathematical modeling, seem even 
more difficult, if not impossible. However, such problems 
actually make the modeling process more important than 
ever. (Increasingly) elaborating systems are a fact of the 
world and those involved with the human brain and behavior 
are probably among the most complex of all (Srivastava, 
2009). For example, modeling techniques allow to unite 
and constrain neural and cognitive-behavioral models 
simultaneously, generating theoretically and empirically 
more plausible inferences (Turner et al., 2013). As we sought 
to promote in this work, despite the practical difficulties, 
the cost-benefit relationship can be very advantageous for 
research in psychology and especially in Brazil, where few 
original theories are produced and most models are frankly 
imported from foreign literature.
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