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ABSTRACT
In the present study, Response Surface Methodology model (RSM) and Artificial Neural Network model 
(ANN) is presented to forecast the ultimate moment capacity of ferrocement using 2 variable process 
modelling (volume fraction and steel slag replacement). The RSM and ANN model’s outcomes are contrasted 
with those of other existing models, like plastic analysis, mechnaism approcah, simplified method, group 
method of data handling, the results shows that ferrocement with steel slag replacement of 25% and chicken 
mesh volume fraction (Vr) of 4.35% has maximum experimental moment capacity of 253.33 kN-mm and 
predicted moment capacity using RSM and ANN is 244.70 kNmm and 255.88 kNmm respectively. The 
adopted ANN have a regression value of 0.9882 and 0.98863 for training and testing respectively. The 
outcomes of the analysis of variance show that the provided models are very suitable since the p value is 
less than 0.005, the projected R2 and the adjustable R2 is less than 20%. Moreover, the flexural moment of 
ferrocement composites is more significantly affected by the Vr. According to the findings of the surface plot, 
Pareto chart, and regression analysis, the Vr is the most important and crucial factor for the flexural moment 
of ferrocement composites.
Keywords: Steel slag; Ferrocement; Artificial Neural network; Leven Berg-Marquardt; Response Surface 
Methodology.

1. INTRODUCTION
The need for cement and concrete will therefore continue to rise due to the expected urbanisation over the next 
50 to 100 years, necessitating initiatives to lessen their environmental impact. Current engineering techniques are 
continually pushing for the improvement of ultra-high performance multifunctional building materials [1]. These 
materials must exhibit enhanced durability and mechanical performance, as well as numerous functionalities, 
to be suitable for new structural applications. Researchers agree that improving concrete’s chemical and physio 
mechanical properties requires working at the micro scale. Ferrocement composite is one of the answers to that 
perennial problem which enhances many properties of concrete and mortar [2] Ferrocement composite (FC) is a 
reinforced concrete construction material which is produced with galvanised or non-galvanised mesh. As 90% of 
its total volume FC is mortar the quality of mortar matrix and its composition has a vital role in the behaviour of 
ferrocement composites [3]. The behaviour of materials contained in ferrocement is determined by orientation, 
the strength of the mesh, and the reinforcing rods. Its ultimate strength is determined by the volume fraction of 
mesh reinforcement [4, 5]. Theoretical predictions support the experimental findings for chicken mesh ferroce-
ment with skeleton reinforcement as bamboo and a plaster mixture of 1:3.5 [6]. Lightweight ferrocement beams 
with extended metal mesh have developed post cracking load when compared with weld mesh [7].
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Load carrying capacity of ferrocement with galvanized iron mesh (GI) and polypropylene (PP) mesh 
increases with volume fraction, whereas PP mesh exhibits better ductility when compared with GI meshes 
[8]. Ferrocement panels with volume fraction 2.35% and 3.77% and 30% steel slag substitution for sand 
has ultimate load maximum energy absorption when compared conventional panels under Impact load  
[9, 10]. The axial stress increases by sixty one percent and thirty one percent correspondingly for ferrocement 
containing 2 and 4 layers of weld mesh with cement matrix containing metakaolin and silica fumes [11]. 
The strength of RC beams is enhanced under flexure with use of weld mesh composites when compared 
with beams strengthened with carbon fibers [12]. Strengthening of reinforced concrete ferrocement with 
more layers of wire mesh produce better yield loads, ultimate loads, and stiffnesses [13]. Ferrocement 
panels with High calcium wood ash (HCWA) up to 40% exhibited superior performance as compared to 
panels without HWCA [14]. Flexural capacity and energy absorption rises with the rise in number of layers 
of mesh while the crack width decreases [15]. Higher ultimate loads, yield loads and stiffness are achieved 
as the number of layers are increased in ferrocement laminates [13]. Accuracy of the forecast moment 
capacity with self-evolving network model of the ferrocement is more with that of the existing models [16]. 
When compared to other models, the Group Method of Data Handling (GMDH) has a complex accuracy for 
predicting the ultimate moment capacity of ferrocement [17]. Comparing to other models like the plastic 
analysis technique, Mechanism approach method, Simplified method, GEP models, and GMDH models, 
the ultimate moment capacity predicted by the back-propagation multilayer perceptron artificial neural 
network has superior accuracy. As related to other approaches like GMDH and ANFIs, the predictable 
ultimate moment of ferrocement using ANN has a higher level of accuracy [18].

Digital image correlation used to characterize ferrocement laminates shows that as no of mesh layers 
increases flexural capacity and energy absorption increases while fracture width reduces [19]. Concrete 
slabs with chicken mesh reinforcement and bamboo skeleton reinforcement exhibit higher mechanical qual-
ities, and theoretical predictions complement the experimental findings [15]. Design of Experiments (DOE) 
statistical and mathematical approach, ideally Response Surface Methodology, may be used to study the 
influence of the independent variables on the results with the least trials [20–23]. DOE may be used to opti-
mize the test variables and produces the best outcome for experimental data as creates good bond between 
independent variables and empirical model [24]. Radial Basis Function Neural Network (RBFNN) outper-
formed the Multiple Linear Regression (MLR) in simulating the removal of hydrochlorothiazide (HCT) by 
two adsorbents. The optimal RBFNN model, when tested with the dataset, demonstrated strong predictive 
capabilities for HCT removal (%), yielding coefficient of determination (R2) values of 0.8460 and 0.9438 for 
multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs), respectively. 
The corresponding mean squared error (MSE) values were 0.0117 for SWCNTs and 0.0010 for MWCNT 
[25]. The regression analysis model developed using RSM to predict compressive strength and split tensile 
strength of concrete containing natural fibres demonstrates a close agreement between the forecasted values 
and the experimental results [26]. The artificial neural network (ANN) model demonstrates effective predic-
tive performance. In the constructed models, the predicted values closely align with the experimental data 
for both training and testing sets. The anticipated values generated by the adaptive neuro-fuzzy inference 
system (ANFIS) model were highly accurate. Additionally, a comparison of performance indices indicates 
that the ANFIS model outperformed the ANN model to some extent [27]. The main in this study is to predict 
the moment capacity of ferrocement composites with chicken mesh and steel slag using RSM and ANN 
and to develop accurate and reliable models that can forecast the structural performance of these compos-
ites under various conditions. In the present study, the moment capacity of ferrocement with steel slag and 
chicken mesh was predicted using CCM in RSM and ANN Feed-forward back propagation neural network 
NN-LM using ANN base model. The DOE approach and ANN are used to analyze the trial findings in order 
to find the best grouping of the self-governing variables (Vr and steel slag). Moreover, feed-forward back 
propagation neural networks and Leven Berg-Marquardt (NN-LM) neural networks were used as training 
functions for ANN. In order to assess the efficacy of each strategy, root mean square error (RMSE), the 
coefficient of determination (R2), mean absolute error (MSE), mean square error (MSE) and mean absolute 
and percentage error (MAPE) of the two models were contrasted. By combining RSM, which is effective 
in exploring complex relationships among multiple factors, with ANN, renowned for its ability to capture 
intricate non-linear patterns, this study achieves a comprehensive understanding of the moment capacity. 
The utilization of chicken mesh and steel slag as composite materials introduces innovative elements, con-
tributing to the optimization of ferrocement structures. This approach not only improves prediction accuracy 
but also provides insights into the synergistic effects of these materials, fostering advancements in the design 
and analysis of ferrocement composites for improved structural efficiency.
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2. MATERIALS AND METHODS

2.1. Mathematical models

2.1.1. Response surface method
Response Surface Methodology (RSM) is a numerical technique used for optimizing and analysing complex 
processes. It involves designing experiments, collecting data, and creating mathematical models to describe 
the relationship between input variables and the output response. The optimal experimental conditions can be 
improved with the help of response surface optimisation. Response Surface Methodology successfully opti-
mises trials by taking into consideration both statistical and mathematical approaches for analysis in order to 
compute the total number of experimental data for better performance. When there are several variables, RSM 
can be used to look at how each one affects the others and how they interact, as well as how important each vari-
able is to the responses or models [28]. To ascertain the association between outcome variables and independent 
factors in RSM, central composite design is employed [29]. Factors and levels of variables must be given for the 
examined responses as shown in Table 1 for DOE of RSM autonomous variables. By applying Equation 1 the 
necessary number of experiments is determined.

	 N y ny� � �2 2 � (1)

where n = number of centre points and y = number of components [30].

2.1.2. Artificial Neural Network
The Artificial Neural Network (ANN) is a computational framework that consists of input layers, hidden layers, 
and output layers. It has been extensively validated as an effective prediction method for accurately forecasting 
output variables in various models. The key benefit of utilizing ANN is its capacity to accurately model complex, 
non-linear relationships with multiple input variables. Additionally, ANN tools are highly favoured due to their 
capability to handle inconsistent and unreliable data, as well as their resilience and fault tolerance [30, 31]. 
The effectiveness of present ANN model depends on 2 input neurons, 1 output neurons, 6 hidden layers and 
activation function.

(i)   � Inside the input layer, there are three neurons (Ni = 3) that represent the volume fraction of weld mesh  
Vr (%), steel slag (% by weight of FA).

(ii)  � In output layer vegetative cell denotes the value of the ultimate moment capacity.
(iii) � Six Neurons are available in the hidden layers.

The neurons are bourgeoned by the respective weights, summated together and applied to an activation 
function in equation (2) to produce a sole output.

	
X f wixi di n� � � �� �� 0 �

(2)

Where “X  ” stands for the neuron’s output, “xi” for its contribution, “wi” for its connecting weights, “d ” 
for its bias value, and “f  ” for its initiation function. Feed-forward propagation is used in this study to convey 
information from contribution nodes. Figure 1 depicts the neural network employed for this investigation.

2.1.3. Comparison parameters
The effects of RSM and ANN models were assessed using a variety of parameters, such as the root mean square 
error (RMSE), mean absolute error (MAE), coefficient of determination (R2), coefficient of correlation (R) and 
mean absolute percentage error (MAPE) [32]. Equations (3)–(5) are be used to calculate errors.

Table 1: Levels of variables.

VARIABLES LOW LEVEL (–1) HIGH LEVEL (+1)
Ferrocement Volume fraction 0 3.77

Steel slag 0 50
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RMSE /� �� 1 2n y x n( )

	
(3)

	
MAE � ��1

1n
y xn

	
(4)

	
MAPE = 1 100n y x� � *

	
(5)

Here x = factual data, y = predicted data and n = sample count.

2.2. Materials
For this experiment, Ordinary Portland Cement of 53 grade with a specific gravity of 3.15 and an early setting 
time of 32 minutes according to IS: 12269-1987 was employed [33]. For ferrocement, river sand with a 
specific gravity of 2.60 and a size of 2.36 mm is adopted, according to IS: 383-1970 and ACI 549 1R-93, 1999 
[34, 35]. According to the guidelines of IS 228 from 1987 [36] steel slag with specific gravity 2.85 passing 
through 2.36 mm sieve was employed. Chicken mesh with diameter 1.2 mm, spacing 25 mm and tensile 
strength of 312 N/mm2 was used. The ferrocement composites were tested with loads at one third point with a 
clear span of 400 mm. According to the specifications in Table 2, ferrocement with the dimensions 150 mm ×  
25 mm × 500 mm was cast and cured with wet burlap.

Figure 1: Architecture of ANN.

Table 2: Details of test specimen with chicken mesh for flexure test.

DESIGNATION VOLUME FRACTION (X1) STEEL SLAG (X2)
1FCGWM 0.94 50
2FCGWM 0.94 0
3FCGWM 3.77 0
4FCGWM 2.355 25
5FCGWM 3.77 50
6FCGWM 2.355 25
7FCGWM 2.355 25
8FCGWM 2.355 0
9FCGWM 0.35 25
10FCGWM 2.355 25
11FCGWM 2.355 60
12FCGWM 2.355 25
13FCGWM 4.35 25
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3. RESULTS AND DISCUSSION

3.1. Experimental investigation
As per to Figure 2, specimens with a Vr of 4.35% and a weight fraction of 25% steel slag achieve an ultimate 
load of 3.80 kN. For specimens with a volume percentage of 0.35% and a replacement rate of 25% in steel slag, 
it has been shown that the ultimate load decreases. Also, it is clear that the ultimate load decreases with a lower 
volume fraction and a higher substitution of steel slag [37].

From Figure 3, it can be shown that specimens with a Vr of 4.35% and 25% steel slag for the fine aggre-
gate attain their extreme moment capacity. It is obvious that the ultimate load and ultimate moment of chicken 
mesh decreases with decreasing volume fractions. On the other hand, ultimate load and moment capacity rise 
with greater Vr. The graph makes it obvious that when volume fraction grows, moment capacity also does so 
due to an increase in moment arm distance and passive confining pressure. Furthermore, the cement matrix and 
weld mesh are well-anchored, increasing the moment carrying capacity indirectly [37]. It was discovered that 
the chicken mesh wires were more successful in raising the ultimate load.

Figure 3: Moment capacity and Vr of weld mesh ferrocement laminates for various steel slag replacements.

Figure 2: Ultimate load for various replacements of steel slag and the Vr of chicken mesh ferrocement laminates.
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3.2. RSM model
According to the CCM, a study was done to determine how the variables Vr and steel slag affected the prediction 
of the ultimate moment capacity of ferrocement. As arrayed in Table 3, 13 flexure strength trials were carried 
out, and the results are shown in Table 3. and obtained responses are shown in equations (6).

	 MRSM � � � � � �72 3 46 5 0 573 0 17 0 00281 0 4221 2 1

2

2

2

1 2. . . . . . *X X X X X X 	 (6)

Distribution curve for the MRSM and Normalised plot are shown in Figure 4 and Figure 5. A distribu-
tion curve, also known as a probability density function (PDF) or probability distribution curve, is a graphical 
representation of the probability distribution of a random variable. It provides information about the likelihood 
of different values occurring for the variable. From Figure 4 bell-shaped curve of the Normal distribution is 
obtained. In bell curve, the peak represents the most probable event in the dataset while the other events are 
equally distributed around the peak. Similarly, from Figure 5. From normalized plot for predicting the ultimate 
moment allows for a relative comparison of different ferrocement laminates.

Table 3: Predicted strengths.

MIX DESIGNATION VOLUME FRACTION 
(X1)

STEEL SLAG  
(X2)

ULTIMATE MOMENT 
(MRSM) kNmm

1FCGWM 0.94 50 117.95
2FCGWM 0.94 0 116.16
3FCGWM 3.77 0 250.02
4FCGWM 2.355 25 170.47
5FCGWM 3.77 50 192.10
6FCGWM 2.355 25 170.47
7FCGWM 2.355 25 170.47
8FCGWM 2.355 0 186.81
9FCGWM 0.35 25 97.61
10FCGWM 2.355 25 170.47
11FCGWM 2.355 60 147.12
12FCGWM 2.355 25 170.47
13FCGWM 4.35 25 244.70

Note: Where MRSM = ultimate moment, (X1) = volume fraction and (X2) = steel slag.

Figure 4: Histogram illustrating bins for the MRSM distribution curve.
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3.2.1. P value and pareto analysis
The p value aids in the significance of evolution elements. The p value of the model should be least which is the 
probability value of the F test, which must be least. The evolution parameters can be significant if its p values are 
≤0.005. If the p-value is >0.005, it is considered that the progression variable is unimportant. Volume fraction 
is a significant factor in determining the final moment of ferrocement under flexure, as shown by the fact that 
X1 has a lower p-value than X2 in ANOVA Table 4. Volume fraction is more important than steel slag, as shown 
by the Pareto chart in Figure 6 since its value was higher when associated to the linear (B) and (AB) lines. The 
findings are consistent with earlier research, which shows that volume fraction may greatly increase ultimate 
load and moment capacity [38].

3.2.2. Surface plot analysis
Figure 7 depict three-dimensional (3D), surface plots illustrating the influence of independent variables on the 
corresponding outcomes. The reaction can be visually depicted through graphical representations in 3D space 
plots, aiding in the visualization of the response surface’s structure [39]. The progression variables, steel slag 
and volume fraction, are graphed along the “x” and “y” axes, while the response is represented on the “z” axis. In 
Figure 7a, 3D surface plots were drawn to better understand how independent factors affected the responses. It 
illustrates the relationship between volume fraction and ultimate moment capacity by showing how the Moment 
capacity for ferrocement laminates grows as the volume fraction increases from 0.97% to 4.35%. Although the 
volume fraction is a key component in determining final load and moment capacity, steel slag addition also 
boosts load bearing capacity when fine aggregate is substituted with steel slag by 25%. From the surface plot, 
it can be concluded that the Vr of 4.35% and the steel slag content of 25% resulted in the extreme ultimate load 
and moment capacity. The range of distribution of Moment capacity may be seen in Figure 7b contour plot, 
which is displayed with self-governing variables volume fraction and steel slag. The graph’s response confirms 
the findings of 3D surface plots.

3.3. ANN Model
Using available data, neural networks (NN) can aid in forecasting the moment capacity of ferrocement when 
steel slag are introduced. This analysis showcases the forecasted values of moment capacity based on various 
input steel slag and volume fraction. To validate the NN’s predictions, experimental results from ferrocement 
specimens incorporating individual steel slag and volume fraction are compared with the predicted values. For 
this investigation Feed-forward back propagation NN-LM training functions are utilised. The results of valida-
tion and training are presented in Figure 8. These figures reveals a very strong correlation with R2 = 0.98832 for 
the training and R2 = 0.98412 for the validation, where R is the linear correlation coefficient. This demonstrates 
the effectiveness and accuracy of the trained neural network. The results obtained for ferrocement incorporated 
with weld mesh and steel slag combination are compared with the existing models.

Figure 5: Normalised plot for the values obtained.
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Table 4: Analysis of variance of RSM model.

SOURCE ULTIMATE MOMENT (MRSM)
DF F-VALUE P-VALUE

Model 5 37.76 0.000
Linear 2 90.27 0.000

X1 1 170.24 0.000
X2 1 10.27 0.015

Square 2 0.06 0.940
X1

2 1 0.01 0.940
X2

2 1 0.12 0.743
Two-way Interaction 1 7.03 0.033

X1 * X2 1 7.03 0.033

Figure 6: Pareto chart of ultimate moment capacity.

Figure 7: Ultimate moment capacity a) 3D surface plot b) contour plot.
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Figure 8: Training and validation of ANN.

Figure 9: Correlation plot for the values obtained.
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3.4. Comparison of models
The Ultimate moment capacity of experimental and existing theoretical model of ferrocement composites are 
arrayed in Figure 9 and Figure 10. The outcomes of Back-Propagation Neural Networks, Central Composite 
Method, Plastic analysis approach, Mechanism approach, Simplified method and GMDH are presented in 
Table 5 to show the comparison between theoretical models and experimental results. Assessed results of ANN 
and RSM are related with the plastic analysis, Mechanism approach, Simplified method and GMDH in Figure 9 
and Figure 10. When comparing the performance of all the models, it appears that ANN and RSM outperforms 
other models currently in use. From the table it clear that in irrespective of the model maximum moment capacity 
for ferrocement is gained for 13FCGWM which has volume fraction of 4.35% and steel slag replacement of 25%.

Table 5: Comparison of ultimate moment capacity.

TEST.NO. Mexp PLASTIC  
ANALYSIS

Mu tu  
( )1� �
�

�
b h X h

2

[40]

MECHANISM 
APPROACH

Mu tu  � ��
bh2

2

[41]

SIMPLIFIED 
METHOD
y x

x
� �
�
�

0 0772

0 422

0 005

2.

.

.

 

 

x
y

f
f�
�

� �

y
f bhc

�
��

Mu

�0

2

[42]

GROUP METHOD OF 
DATA HANDLING

Mu � � � �0 091
0 009 0 042 2

.
. .hf
b

hcu

f�

b h f
f

f ul f

ul

� �10 37 0 0212. .�� �

[17]

MANN
(kNmm)

MRSM 
(kNmm)

1FCGWM 120.00 95.56 96.27 96.12 102.12 106.65 117.95

2FCGWM 103.33 102.12 102.56 103.25 105.56 107.76 116.16

3FCGWM 250.00 215.56 212.56 225.56 235.58 248.40 250.02

4FCGWM 166.67 132.25 115.56 125.56 156.58 168.42 170.47

5FCGWM 180.00 102.23 115.58 125.56 135.52 141.35 192.10

6FCGWM 173.33 125.56 122.13 129.12 138.89 167.01 170.47

7FCGWM 173.33 156.58 141.23 135.89 158.89 160.40 170.47

8FCGWM 166.67 156.56 142.23 132.88 135.58 152.37 186.81

9FCGWM 86.67 66.25 56.58 60.28 18.89 97.45 97.61

10FCGWM 173.33 210.23 209.89 210.00 225.56 223.12 170.47

11FCGWM 153.33 156.58 158.89 160.25 164.56 175.00 147.12

12FCGWM 173.33 156.68 157.25 145.58 135.56 160.80 170.47

13FCGWM 253.33 238.25 222.56 215.48 210.56 255.88 244.70

Figure 10: Comparison of experimental results vs different models.
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Where
h = Thickness of the ferrocement member, b = Breadth of the ferrocement member, x1 = Depth of the 

neutral axis, fcu = strength of mortar under compression,  fu = Ultimate tensile strength chicken mesh, As = Area 
of steel, � tu �

A f
bh
s u. , vf = Volume fraction of chicken, ηo = Global efficiency factor of chicken mesh, σy = Yield 

tensile strength of chicken mesh, ′fc  = strength of mortar under compression.
Equations (7)–(9) demonstrate how RMSE, MAPE, and MAE are adopted to assess the model’s perfor-

mance with the pre-existing models. As per the statistical outcomes shown in Table 6, ANN and RSM presented 
in this study have good evaluation performance when compared to the existing models projected. The estimated 
error values of Root Mean Square Error (RMSE) of the ANN proposed is lesser than the other models consid-
ered. The MAPE and MAE was found to be minimum for MANN for the coefficient of detection (R2) for the 
ANN and RSM is 98% and 96% respectively.

	
RMSE Mu(actual Mu(model)i = 1� ��1

2
n

n ( ) )
	

(7)

	
MAPE =

Mu(actual) Mu(model)

(Mu(actual))
i = 1

1
100

n
n ��

�
�

�

�
���

	
(8)

	
MAE Mu(actual) Mu(model)i = 1� �� �� ��1

n
n

	
(9)

4. CONCLUSION
In the current work, the ultimate moment capacity of ferrocement composites containing steel slag in varying 
volumes is determined using ANN and RSM, and the findings are outlined below.

•	 The Ultimate Moment capacity of ferrocement laminates has increased for ferrocement with 4.35% and 25% 
by weight of steel slag as fine aggregate.

•	 The ANNOVA outcomes indicate that the volume percentage of mesh reinforcement is the major indicator 
of ultimate moment capacity.

•	 The RSM model for Moment capacity were shown to be very significant by Analysis of Variance and Pareto 
chart analysis. Because the models’ p values were less than 0.005, their mathematical outputs were very pre-
cise. The volume fraction (X1) was discovered to be the most important factor for ultimate Moment capacity.

•	 The chosen Leven Berg-Marquardt (NN-LM) and Feed-forward back propagation neural network has a 
regression value of 0.9882 and 0.98863 for training and testing respectively. The comparative results with 
different studies clearly indicate that the projected ANN model and RSM model has a high level of accuracy 
which can be used for prediction of the ultimate moment of ferrocement composites. Additionally, findings 
indicate that the Vr of chicken mesh is crucial for ferrocement composites’ ultimate moment capacity.

Table 6: Assessment of existing models with RSM and ANN.

STATISTICAL 
PARAMETER

Mexp PLASTIC 
ANALYSIS

MECHANISM 
APPROACH

SIMPLIFIED 
METHOD

GMDH MANN MRSM

Mean 210.7 204.5 200.7 198.6 202.7 203.6 204.6

Standard  
deviation

70.7 75.6 75.7 73.2 68.6 65.4 65.6

RSME 0.48 0.0932 0.0889 0.1586 0.0365 0.0352 0.0356
MAPE 13.25% 12.58% 13.58% 14.58% 13.45% 11.56% 12.01%
MAE 0.04 0.0358 0.0445 0.0892 0.0156 0.0125 0.0132

Correlation (R) 0.9667 0.9235 0.8785 0.8568 0.9786 0.9886 0.9643
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•	 Ferrocement composites with 4.35% steel slag content find applications in lightweight construction panels, 
architectural cladding, and decorative elements, offering a balanced combination of structural strength and 
reduced weight. These laminates are suitable for non-load-bearing elements and aesthetic applications where 
versatility and design flexibility are crucial.
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